PROBLEMS OF GEOMETRICALLY NONLINEAR ELASTICITY

@W. G. LITVINOV

A regularization of the equations of nonlinear elasticity is introduced, and the existence of a solution of the regularized problem is proved for a wide class of data under the "displacement" and "mixed" formulations. The uniqueness is established for small data, and convergence to the solution of non-regularized problem is proved in the case when there exists a solution of non-regularized problem.

1. Initial and regularized problems. Let Ω be a bounded domain in \mathbb{R}^n occupied with an elastic body before the deformation. The problem of elasticity consists in finding a vector-function of displacements $u = (u_1, \ldots, u_n)$ such that

$$-\frac{\partial}{\partial x_j} \left(\sigma_{ij}(u) + \sigma_{qj}(u) \frac{\partial u_i}{\partial x_q} \right) = f_i \text{ in } \Omega \ i = 1, \dots, n.$$
 (1.1)

Here and below the summation over repeated index is implied, f_i are the components of the body force function $f = (f_1, \ldots, f_n)$, $\sigma_{ij}(u)$ are the components of the stress tensor $\sigma(u) = (\sigma_{ij}(u))$

$$\sigma_{ij}(u) = a_{ijkm} \varepsilon_{km}(u), \tag{1.2}$$

where $\varepsilon_{km}(u)$ are the components of the deformation tensor $\varepsilon(u) = (\varepsilon_{km}(u))$

$$\varepsilon_{km}(u) = \varepsilon_{km}(u) + \frac{1}{2} \frac{\partial u_l}{\partial x_k} \frac{\partial u_l}{\partial x_m}, \ \varepsilon_{k,m} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_m} + \frac{\partial u_m}{\partial x_k} \right).$$
(1.3)

We consider two types of the boundary conditions. The first is the displacement formulation:

$$u|_{S} = 0, (1.4)$$

where S is the boundary of Ω . The second is the mixed formulation. Let S_1 and S_2 be open non-empty sets in S such that $S = \overline{S}_1 \cup \overline{S}_2$, $S_1 \cap S_2 = \emptyset$. For the mixed formulation the boundary conditions are the following

$$u\big|_{S_1} = 0$$
, $(\sigma_{ij}(u) + \sigma_{qj}(u)\frac{\partial u_i}{\partial x_q})\nu_j\big|_{S_2} = g_i$ $i = 1, ..., n$, (1.5)

where ν_j are the components of the unit outward normal vector $\nu=(\nu_1,\ldots,\nu_n)$ along the boundary S,g_i are the components of the surface force $g=(g_1,\ldots,g_n)$. The displacement formulatiom is the obtained from the mixed when S_2 is an empty set. We suppose that the coefficients of elasticity a_{ijkm} satisfy the conditions

$$a_{ijkm} \in L_{\infty}(\Omega), \ a_{ijkm} = a_{jikm} = a_{ijmk} = a_{mkij},$$

$$a_{ijkm}(x)\xi_{ij}\xi_{km} \ge c_0 \sum_{i,j=1}^{n} \xi_{ij}^2 \text{ almost everywhere}$$

$$in \ \Omega \ \forall \xi_{ij} = \xi_{ji} \in R, \ c_0 = \text{const} > 0.$$

$$(1.6)$$

Define the space V and the operator $N:V\to V^*$, where V^* is the dual of V, as follows

$$V = \left\{ u = (u_1, \dots, u_n) \in W_4^1(\Omega), \ u \big|_{S_1} = 0 \right\}, \tag{1.7}$$

Typeset by AMS-TEX

From the physical viewpoint the nonlinear addends in the deformation tensor $\varepsilon(u) =$

= $(\varepsilon_{km}(u))$ (see (1.3)) are defined by the average angles of deformed elements turning (see [4,5]) and, in general, all mechanics of continuum is based on the averaging. So we define a modified strain tensor $\gamma(v) = (\gamma_{km}(v))$ of the form

$$\gamma_{km}(v) = e_{km}(v) + \frac{1}{2} \frac{\partial (P_{\rho}v_l)}{\partial x_k} \frac{\partial (P_{\rho}v_l)}{\partial x_m}.$$
 (1.14)

Here we consider ρ to be a fixed constant, $\rho \in (0, \alpha)$. Then the strain energy $\Phi_1(v)$ and the components of the stress tensor $\tau(v) = (\tau_{ij}(v))$ are defined by

$$\Phi_1(v) = \frac{1}{2} \int_{\Omega} a_{ijkm} \gamma_{km}(v) \gamma_{ij}(v) dx, \qquad (1.15)$$

$$\tau_{ij}(v) = a_{ijkm}\gamma_{km}(v). \tag{1.16}$$

Define the space V_1 and the functional Ψ_1 on V_1 as follows

$$V_1 = \left\{ v \in H^1(\Omega)^n, \ v|_{S_+} = 0 \right\}, \tag{1.17}$$

$$\Psi_1(v) = \Phi_1(v) + \beta \int_{\Omega} a_{ijkm} e_{km}(v) e_{ij}(v) dx -$$

$$- \int_{\Omega} f_i v_i dx - \int_{S_2} g_i v_i ds.$$
(1.18)

Here β is a small positive constant. Providing $\beta = 0$, the functional Ψ_1 defines the total energy. We define a norm on V_1 by

$$||v||_{1} = \left(\int_{\Omega} a_{ijkm} e_{km}(v) e_{ij}(v) dx\right)^{1/2}.$$
 (1.19)

Due to (1.6) and Korn's inequality, this norm is equivalent to the norm of $H^1(\Omega)^n$. Consider the problem:

find
$$u$$
 satisfying $u \in V_1$ $\Psi_1(u) = \min_{v \in V_1} \Psi_1(v)$. (1.20)

We call this function u a solution of the regularized problem for the mixed formulation. Certainly, when S_2 is an empty set, i.e. $S = S_1$, u is a solution of the regularized problem for the displacement formulation. It follows from (1.20) that $\frac{d}{dt}\Psi_1(u+tv)\big|_{t=0} = 0 \ \forall v \in V_1$, therefore

$$u \in V_1(N_1(u), v) = \int_{\Omega} f_i v_i dx + \int_{S_2} g_i v_i ds \ \forall v \in V_1, \tag{1.21}$$

where $N_1:V_1\to V_1^*$,

$$(N_1(u), v) = \int_{\Omega} [\tau_{ij}(u)e_{ij}(v) + \tau_{qj}(u)\frac{\partial(P_{\rho}u_i)}{\partial x_q}\frac{\partial(P_{\rho}v_i)}{\partial x_j} + 2\beta a_{ijkm}e_{km}(u)e_{ij}(v)]dx.$$
(1.22)

Theorem 1. Let Ω be a bounded domain in R^n with a Lipschitz continuous boundary S. Let also (1.6), (1.10) hold and $f,g \in V_1^*$, where V_1^* is the dual of V_1 . Then for an arbitrary $\rho > 0$, there exists a solution of problem (1.20) that is just a solution of problem (1.21). There exists r > 0 such that if $||f||_{V_1^*} + ||g||_{V_1^*} \le r$, then the solution of problem (1.20) (respectively (1.21)) is unique.

Proof. It is easy to see that Ψ_1 is an increasing functional, i.e. $\Psi_1(v) \to \infty$ as $||v||_1 \to \infty$ uniformly with respect to $v \in V_1$. Therefore, if $\{u_n\}$ is a minimizing sequence for Ψ_1 then $\{u_n\}$ is bounded in V_1 . So we can choose a subsequence $\{u_m\}$ such that $u_m \to u$ weakly in V_1 , and by (1.10), $P_\rho u_m \to P_\rho u$ strongly in $W_4^1(\Omega)^n$. From here we have $\underline{\lim}_{m\to\infty} \Psi_1(u_m) \ge \Psi_1(u)$, $u \in V_1$. Therefore, u is a solution of problem (1.20) and (1.21), respectively.

The functional Ψ_1 is infinitely Fréchet differentiable on V_1 , and there exists $\gamma > 0$, such that Ψ_1 is strictly convex in $d_{\gamma} = \{v \in V_1, ||v||_1 \leq \gamma\}$. Then the operator N_1 is strictly monotone in d_{γ} (see [6]). It can be seen that there exists r > 0 such that if $||f||_{V_1^*} + ||g||_{V_1^*} \leq r$, then an arbitrary solution of problem (1.20) (respectively (1.21)) belongs to d_r . Therefore, in the case when $||f||_{V_1^*} + ||g||_{V_1^*} \leq r$, the solution of problem (1.20) (respectively (1:21)) is unique.

2. Convergence to the solution of non-regularized problem. For the smooth boundary and for small and smooth body forces there exists the unique solution of the initial (non-regularized) problem (1.1), (1.4) (see [2]). We will show that in this case the solutions of regularized problems converge to the solution of problem (1.1), (1.4) as a parameter of regularization tends to zero.

Consider the regularized problem for the displacement formulation. In this case, $S_1 = S$, $V_1 = H_0^1(\Omega)^n$, $P_{\rho} = P_{1\rho} \circ P_2$, P_2 is an operator of extension on R^n by zero, $P_{1\rho}$ is defined by (1.11). Then we get the following problem:

find u satisfying

$$u \in H_0^1(\Omega)^n \ (N_1(u), v) = \int_{\Omega} f_i v_i dx \ \forall v \in H_0^1(\Omega)^n,$$
 (2.1)

where $(N_1(u), v)$ is defined by (1.22). By (1.11), (1.16), (1.22) and (2.1) we get the following equations for u

$$-(1+2\beta)\frac{\partial}{\partial x_j}(a_{ijkm}e_{km}(u)) = q_{\rho i} \ i = 1,\dots, n, \tag{2.2}$$

$$q_{\rho i} = \frac{1}{2} \frac{\partial}{\partial x_i} \left(a_{ijkm} \frac{\partial (P_{\rho} v_l)}{\partial x_k} \frac{\partial (P_{\rho} v_l)}{\partial x_m} \right) + \frac{\partial}{\partial x_i} \left(P_{\rho}^{\star} \left(\tau_{qj}(u) \frac{\partial (P_{\rho} u_i)}{\partial x_g} \right) \right) + f_i. \tag{2.3}$$

Here P_{ρ}^{*} is the adjoint of P_{ρ} operator defined by

$$(P_{\rho}^{*}\omega)(x) = \int_{\mathbb{R}^{n}} \Psi_{\rho}(|x-y|)\omega(y)dy, \tag{2.4}$$

where $\omega \in L_2(\Omega)$ and ω is extended by zero outside of Ω , and equations (2.2) are considered in the sense of distributions.

We suppose that the boundary S is of the class C^2 , $a_{ijkm} \in C^1(\overline{\Omega})$ in addition to (1.6), and $f \in L_p(\Omega)^n$, p > n. Then $q_{pi} \in L_p(\Omega)$ and from [7.8] it follows that $u \in W_p^2(\Omega)^n$.

Now let $\{P_{\rho}\}, \rho \in (0, \alpha]$ be a family of regularizing operators such that

$$\lim_{\rho \to 0} ||P_{\rho}\omega - \omega||_{W_p^2(\Omega)} = 0 \ \forall \omega \in W_p^2(\Omega). \tag{2.5}$$

The operator P_{ρ} has the form $P_{\rho} = P_{1\rho} \circ P$, where P is an operator of extension on R^n , $P \in \mathcal{L}(W_p^2(\Omega), W_p^2(R^n))$. $P_{1\rho}$ is defined by (1.11). We define the space V_2 as follows

$$V_2 = W_p^2(\Omega)^n \cap H^1(\Omega)^n, \ p > n.$$
 (2.6)

 V_2 is a Banach space with the norm of $W_p^2(\Omega)^n$, and we denote this norm by $||\cdot||_2$. Let us consider the problem

$$u_{\rho} \in V_2, \quad A_{\rho}(u_{\rho}) = f, \tag{2.7}$$

$$A_{\rho}(u_{\rho}) = \{A_{\rho}(u_{\rho})_{i}\}_{i=1}^{n},$$

$$A_{\rho}(u_{\rho})_{i} = -(1+2\beta(\rho))\frac{\partial}{\partial x_{j}}(a_{ijkm}e_{km}(u_{\rho})) - \frac{1}{2}\frac{\partial}{\partial x_{j}}\left(a_{ijkm}\frac{\partial(P_{\rho}v_{l})}{\partial x_{k}}\frac{\partial(P_{\rho}v_{l})}{\partial x_{m}}\right) - \frac{\partial}{\partial x_{j}}\left(P_{\rho}^{\star}\left(\tau_{qj}(u_{\rho})\frac{\partial(P_{\rho}u_{i})}{\partial x_{q}}\right)\right).$$

$$(2.8)$$

Here $\tau_{qj}(u_{\rho})$ is defined by (1.14), (1.16), where P_{ρ} is such that (2.5) holds, P_{ρ}^{*} is defined by (2.4), where ω is extended by zero outside of Ω , and β is considered as a following function on ρ

$$\begin{cases} \beta \text{ is a continuous function decreasing on}[0, \alpha], \\ \beta(\rho) > 0 \ \forall \beta \in (o, \alpha], \ \beta(0) = 0. \end{cases}$$
 (2.9)

Theorem 2. Let Ω be a bounded domain in \mathbb{R}^n with a boundary S of the class C^2 , $a_{ijkm} \in C^1(\overline{\Omega})$ and (1.6), (2.5), (2.9) hold. Let also $f \in L_p(\Omega)^n$, p > n. Then there exist positive constants r, ρ_0 such that for $f \in d_r = \{f \in L_p(\Omega)^n, ||f||_{L_p(\Omega)^n} \leq r\}$, $\rho \in (0, \rho_0]$, there exists a unique solution of problem (2.7). The function $\rho \to u_\rho$ is a continuous mapping from $(0, \rho]$ into V_2 , and $u_\rho \to u$ in $W_p^2(\Omega)^n$ as $\rho \to 0$, where u is a solution of non-regularized problem (1.1), (1.4).

Here we sketch a proof of Theorem 2. The function A_{ρ} a continuously Fréchet differentiable mapping from V_2 into $L_p(\Omega)^n$, and its derivative $A'_{\rho}(v)$ at a point v has the form

$$A'_{\rho}(v) = J_{\rho} + U_{\rho}(v).$$
 (2.10)

Here J_{ρ} is the operator of linear elasticity

$$J_{\rho}\omega = \left\{ -(1 + 2\beta(\rho)) \frac{\partial}{\partial x_j} (a_{ijkm} e_{km}(\omega)) \right\}_{i=1}^n, \tag{2.11}$$

and $||U_{\rho}(v)||_{\mathcal{L}(V_2,L_{\rho}(\Omega)^n)} \to 0$ as $||v||_2 \to 0$ uniformly with respect to $\rho \in (0,\rho_0]$. It follows from [7,8] that J_{ρ} is an isomorphism from V_2 onto $L_p(\Omega)^n$.

We define the mapping $G_{\rho}: L_{p}(\Omega)^{n} \times V_{2}$ of the form

$$G_{\rho}(f,v) = v - J_{\rho}^{-1}(A_{\rho}(v) - f)$$
 (2.12)

and prove that there exist positive constants r, γ, ρ_0 such that $\forall \rho \in (0, \rho_0]$ and $\forall f \in d_r$ the mapping $G_{\rho}(f, \cdot) : v \to G_{\rho}(f, v)$ is a contraction in $\tilde{d}_{\gamma} = \{v \in V_2, ||v||_2 \leq \gamma\}$, i.e

$$||G_{\rho}(f, v) - G_{\rho}(f, w)||_{2} \le c_{1}||v - \omega||_{2}$$

$$\forall v, w \in \tilde{d}_{\gamma} \ \forall \rho \in [0, \rho_{0}], \ c_{1} < 1.$$
(2.13)

For $\rho=0$ we have $P_0=I$, where I is the identical operator in $W_p^2(\Omega)$. The function $G_\rho(f,\cdot)$ maps \tilde{d}_γ into \tilde{d}_γ . Therefore for an arbitrary $\rho\in[0,\rho_0]$, there exists a unique $u_\rho\in\tilde{d}_\gamma$ such that $u_\rho=G_\rho(f,u_\rho),\ u_0=u$ being a solution of problem (1.1), (1.4). We have

$$||u_{\rho} - u_{0}||_{2} = ||G_{\rho}(f, u_{\rho}) - G_{0}(f, u_{0})||_{2} \le \le ||G_{\rho}(f, u_{\rho}) - G_{\rho}(f, u_{0})||_{2} + ||G_{\rho}(f, u_{0}) - G_{0}(f, u_{0})||_{2}.$$
(2.14)

By (2.13), (2.14) we get

$$||u_{\rho}-u_{0}||_{2} \leq (1-c_{1})^{-1}||G_{\rho}(f,u_{0})-G_{0}(f,u_{0})||_{2}.$$

The right hand side of this inequality tends to zero as $\rho \to 0$. Therefore $u_{\rho} \to u_0$ in $W_p^2(\Omega)^n$ as $\rho \to 0$.

REFERENCES

- 1. Ciarlet G., Rabier P., Les Equations de Von Karman, Berlin etc.: Springer-Verlag, 1980.
- Ciarlet G., Mathematical Elasticity, Volume I: Three Dimensional Elasticity, Amsrerdam etc.: Noth-Holland, 1988.
- 3. Smirnov V.I., Course of the Higher Mathematics, V.5, Moscow: Fizmatgis, 1959 (in Russian).
- 4. Novozhilov V.V., Bases of the Nonlinear Theory of Elasticity, Moscow: Gostehizdat, 1948 (in Russian).
- Guz A.N., Stability of Three-Dimensional Deformed Bodies, Kiev: Naukova Dumka, 1971 (in Russian).
- Vainberg M.M., Variational Methods and Methods of Monotone Operators, Moscow: Nauka, 1972 (in Russian).
- Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math. 17 (1964), 35-92.
- 8. Mihlin S.G., Spectrum of the bunch of operators of elasticity theory, Uspekhi Mat. Nauk 28 (1973), 43-82.