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PROBLEMS OF GEOMETRICALLY NONLINEAR ELASTICITY
©W. G. LiTviNoV

A regularization of the equations of nonlinear elasticity is introduced, and the
existence of a solution of the regularized problem is proved for a wide class of data
under the "displacement” and ”mixed” formulations. The uniqueness is estab-
lished for small data, and convergence to the solution of non-regularized problem
is proved in the case when there exists a solution of non-regularized problem.

1. Imitial and regularized problems. Let €2 be a bounded domain in K"
occupied with an elastic body before the deformation. The problem of elasticity
consists in finding a vector-function of displacements u = (uy, ..., u,) such that

) du; A
—a?_-(a',-j(u)fa'”(u)g:-:—):_ﬁ;nQ:: 1 i (1.1)
J 9 7

Here and below the summation over repeated index is implied, f; are the compo-
nents of the body force function f = (fi,..., fn), 0ij(u) are the components of
the stress tensor o(u) = (oi;(u))

oij(u) = aijemerm(u), (1.2)

where £xm(u) are the components of the deformation tensor e(u) = (¢xm(u))

Ekm(u) — ekm(u) + =

10y Bu; 1, 8uy i Bum). (1.3)

2 9zy Oz = e 5(8-.-.,,‘

We consider two types of the boundary conditions. The first is the displacement
formulation:

ul =0, (1.4)

where S is the boundary of Q. The second is the mixed formulation. Let S; and
S, be open non-empty sets in S such that S = S, US,, S, NS, = @. For the
mixed formulation the boundary conditions are the following

“ls =0, (fr._,(u)+crq_,(u) )u_f|52 gird=1)0m (1.5)

where v; are the components of the unit outward normal vector v = (v, ...,vp)
along the boundary S,g; are the components of the surface force ¢ = (gl o)
The displacement formulatiom is the obtained from the mixed when S is an empty
set. We suppose that the coefficients of elasticity a;jim satisfy the conditions

Qijkm € Loo(ﬂ)s Aijkm = Qjikm = Qijmk = Amkij,
T
aijem(z)éij€km > Co Z .5,2‘, almost everywhere (1.6)
ij=1
in QVE; =& € R, cop=const > 0.
Define the space V and the operator N : V. — V=, where V= is the dual of V', as

follows
V= {u:(ul,,..,u,,)eu-:}(n). ulg, :o}, (1.7)
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From the physical viewpoint the nonlinear addends in the deformation tensor
(u) = :
= (cem(u)) (see (1.3)) are defined by the average angles of deformed elements
turning (see [1.5}) and, in general, all mechanics of continuum is based on the
averaging. So we define a modified strain tensor (v) = (4, (#)) of the form

T S e
‘Tkm(")—f-hn{{J"f'g"'E)‘;_;_“‘a"'n_'

(1.14)

Here we consider p to be a fixed constant, p € (0, ). Then the strain energy d(v)
and the components of the stress tensor 7(v) = (7;;(v)) are defined by

1
¢ (v) = 3 /a_.-_;k,,,";km{r:)‘,:,-j(t.!)d.r. _ (1.15)
Q
‘.*'j{!:) = WijkmThm [.L‘], (l“)]

Define the spave Vi and the functional ¥ on ¥V as follows
1} 1 !

vi={veniay, o, =o}, (1.17)

V(o) =dy(v) + fj AijhmCem(v)ei;(v)de—
Q

—./f,-t.!l-d;r-/y,-v,-ds, (1.18)
0
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Here 3 is a small positive constant. Providing 3 = 0, the functional ¥, defines
the total energy. We define a norm on V; by

el = (f(:,-j-kmrkm[r]c,-d,(r:].f.r)”E. (1.19)
1

Due to (1.6) and Korn's inequality, this norm is equivalent to the norm of /1 (s,
Consider the problem:

Jind u satisfyingu € Vi Wy (u) = nelip W (v). (1.20)
v 1

We call this function u a solution of the regularized problem for the mixed for-
mulation. Certainly. when Sy is an empty set, i.e. § = Sy, u is a solution of the
regularized problem for the displacement formulation. It follows from {1.20) that
ﬁwl(“ i ~“f']|l:{j =0 Vv e V|, therfore

W€ Vi (Ny(u),v) = j Jividz + / giveds Yo € Vi, (1.21)
: i ;
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where Ny -V — V7,

A Pou;) O(Pyv;)
e
day e

(N(u),v) = /[T,‘j(f!)ﬁ,‘j(i‘.’] + 7y (u)
1]
+ 28d;jkmerm(u)e;j(v)]de. (1.22)
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Theorem 1. Let Q he a bounded domain in R" with a Lipschitz continuous
boundary S. Let also (1.6). (1.10) hold and f.q € V7. where V] s the dual of V.
Then for an arbitrary p > 0. there exists a solution of problem (1.20) that is just
a solution of problem (1.21). There exists r > Osuch that if }{f|lve + |lglhve < r.
then the solution of problem (1.20) (respectively (121} 1s uniegue.

Proof. It 1= casy to see that Wy s an inereasimg functional e Wiled - ~ as
Hetlp — ~ untformly with respect o v € Vil “Therefore, i {u, ) 1s 4 nuninizing
sequence for Wy then {u, b s bounded i Ve So we can choose a subscquence
L, b osuch that w,, == w weakly in Vioand by (1.10), Pu,,, — Pou strongly in

W)™ From here we have lin,, . Wi(u,,) > Wy (u). u € Vi Therefore uis a
solution of problem (1.20) and {1.21). respectively.

The functional W, s infinitely Fréchet differentiable on Vi and there exists
5 > 0, such that ¥, is strictly convex i d = {v € Vi |iv]ly <~} Then the
operator Nyois strictly monotone inod. (see {fi}). It can be seen that there exists
r > Usuch that if |lf||1- +ligliv, < rothen an arbitrary solution of probleni {1.20)
{respectively (1.21)) belongs to d, . Therefore, in the case when | fily e +1glive < r
the solution of problem (1.20) (respectively (121)) is unique :

2. Convergence to the solution of non-regularvized problem. For the
smooth boundary and for small and smooth body forces there exists the unique
solution of the initial (non-regularized) problem (1.1). (1.4) (see [2]). We will show
that in this case the solutions of regularized problems converge to the solution of
probleme (11} (14} as a parameter of regularization tends to zero

Consider the regularized problem for the displacement formulation. T this case.
SN = P, = P, 0 Py s an operator of extension on I by
zero, P, s defined by (L 11 Then we get the following problem:

find w satesfying

u € HA{ )™ (Ni(u)v) = /_j",r'.-'f.r Yo e Hi(s)", (2.1)

{1

where (Np(u). e) s defined by (122} By (111}, (116, (1.22) and (2.1} we get
the following equations for u

A
—(1 + 2-5}':‘;'-- kaiehnlly =i ="l o, (2.2)
[ .f‘j
222 7l }},\f'f} el r“', v}, Fe 3 .-')‘(,“,u, b 7
i = (W ke = e e s S i 2.3
el 2 l‘).f'; (”U‘ (1!‘_;.— U.f‘m } Eg f‘).f')‘ {,”I ( “{“] . '-F )} e ,‘ ( ;J

Here 27 is the adjoint of P, operator defined by
n - i 2

("'J:-u-'}(-f'} = / V(e — yhw(y)dy. (2.1
i

where w € Lo(82) and w is extended by zero outside of Q. and equations (2.2) are
considered in the sense of distributions.

We suppose that the boundary S is of the class €%, ijrm € ( 182 in addition
to (1.6). and f € L,()". p > n. Then g, € Lp(Q) and from [7.8] it follows that
u € 1'.'_,'_"‘{“}"

Now let {P,}.p € (0.a] be a family of regularizing operators sueh that

I':ng] HPow — .A:|!|,1-r.l»l-“: =0Vu e ll’f{sl}. (2.5)
p—



The operator P, has the form P, = ', 0 P. where P is an operator of extension
on R". P € L'{'.l'ﬁ[!?}, " JT,( R™)). P, is defined by (1.11). We define the space V,
as follows

[+]
Vo= WH)" nHY(Q)". p>n. (2.6)

V5 is a Banach space with the norm of l"l":;"(Q}”. and we denote this norm by || -{]..
Let us consider the problem

wp € Vo, Aj(up) =1, (2.7)

Ap(up) = {Ap(u)i bz,
%)
-‘1;:(";1]:’ = _(l o QIJ(P))é‘%_—(ﬂijkmfhn(”ﬂ”_
e

: - 4 ‘] d .. , - 2 .
o ]-._(')_ (ﬂl'jl‘md{.!.'lﬂ"”‘_d(!pu)) g "_(:"_ (P- (Ti;.i'{up]d{.f"ih))) :
2dx; drg =0 5P o W dz; ) (2.8)

Here 7y;(u,) is defined by (1.14), (1.16), where P, is such that (2.5) holds, P} is
defined by (2.4). where w is extended by zero outside of 2, and 3 is considered as
a following function on p

(2.9)

{ 3 ts a conlinuous funclion decreasing on[0, a).
3(p) >0VI3E (0.a]. 3(0)=0.

Theorem 2. Let Q be a bounded domain in R™ with a houndary S of the class C?,
aijkm € C'(Q) and (1.6), (2.5), (2.9) hold. Let also [ € L,(2)", p > n. Then there
exist positive constants r, pp such that for f € d, = {f € Lo(Q)", || fll1, ) < 7}
p € (0. po], there exists a unique solution of problem (2.7). The function p — u, is
a continuous mapping from (0, p] into V4, and u, — u in lV; (2)" as p — 0, where
u is a solution of non-regularized problem (1.1). (1.4).

Here we sketeh a proof of Theorem 2. The function A, a continuously Fréchet
differentiable mapping from Vi into L,(2)", and its derivative Al,(v) at a point v
has the form

Al(v) = Jp + Up(v). (2.10)

Here J, is the operator of lincar elasticity
Pl 2] n 4
Jpw = {=(1 + Z_J(p})W(a,jk,,,rh.l(u}])}I.:]. (2.11)
j

and [[U ()| gv,.n,i0)n) — 0 as ||v]]2 — 0 uniformly with respect to p € (0, pg]. It
follows from [7.8] that J, is an isomorphism from V5 onto L,(€2)".
We define the mapping G, : Lp(2)" x Vi of the form

Go(f, l")=';—J;I(Ap{1!)—f) (2.12)
and prove that there exist positive constants r,v, pg such that Vp € {ll.pn] and
V[ € d, the mapping G,(f,)) : v — G,(f,v) is a contraction in d, = {v €
Vo, llelfz < 2}, e

NG o[, v)=Go(f w2 < er]lv — w2
Vo, uw € dy Yp € [0, p0], €1 < 1. (2.13)
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For p = 0 we have Py = I, where I is the identical operator in WE(Q). The
function G,(f,) maps d., into d.,, Therefore for an arbitrary p € [0, po}, there

exists a unique u, € d, such that u, = G,(f,u,), uo = u being a solution of
problem (1.1), (1.4). We have

[y — uolla = [|Go(f, up) — Go(f‘ up)flz <

< NGH(f, up) = Go(f,uo)ll2 + |Gy, uo) = Go(F, wo)ll2- ,
(2.14)

By (2.13), (2.14) we get

llup = uoll2 < (1 = e1) ' IG,(f, wo) — Go(f, uo)ll2-

The right hand side of this inequality tends to zero as p — 0. Therefore u, — wug
in WPE(Q)" as p— 0.
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